
PMake — A Tutorial
Adam de Boor

ii

PMake — A Tutorial
Adam de Boor
Revision: 43184
Copyright © 1988, 1989 Adam de Boor
Copyright © 1989 Berkeley Softworks
Copyright © 1988, 1989, 1993 The Regents of the University of California.

All rights reserved.

This code is derived from software contributed to Berkeley by Adam de Boor.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following ac-
knowledgement: This product includes software developed by the University of California, Berkeley
and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

Important
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMIT-
ED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

http://svnweb.freebsd.org/doc?view=revision&revision=43184

Table of Contents
1. Introduction . 1
2. The Basics of PMake . 3

2.1. Dependency Lines . 3
2.2. Shell Commands . 6
2.3. Variables . 8
2.4. Comments . 12
2.5. Parallelism . 12
2.6. Writing and Debugging a Makefile . 13
2.7. Invoking PMake . 16
2.8. Summary . 21

3. Short-cuts and Other Nice Things . 23
3.1. Transformation Rules . 23
3.2. Including Other Makefiles . 27
3.3. Saving Commands . 28
3.4. Target Attributes . 29
3.5. Special Targets . 32
3.6. Modifying Variable Expansion . 34
3.7. More Exercises . 36

4. PMake for Gods . 37
4.1. Search Paths . 37
4.2. Archives and Libraries . 38
4.3. On the Condition... 40
4.4. A Shell is a Shell is a Shell . 42
4.5. Compatibility . 45
4.6. DEFCON 3 – Variable Expansion . 46
4.7. DEFCON 2 – The Number of the Beast . 46
4.8. DEFCON 1 – Imitation is the Not the Highest Form of Flattery 46
4.9. The Way Things Work . 47

5. Answers to Exercises . 49
Glossary of Jargon . 51

Chapter 1. Introduction
PMake is a program for creating other programs, or anything else you can think of for
it to do. The basic idea behind PMake is that, for any given system, be it a program or a
document or whatever, there will be some files that depend on the state of other files (on
when they were last modified). PMake takes these dependencies, which you must specify,
and uses them to build whatever it is you want it to build.

PMake is almost fully-compatible with Make, with which you may already be familiar.
PMake's most important feature is its ability to run several different jobs at once, making
the creation of systems considerably faster. It also has a great deal more functionality
than Make.

This tutorial is divided into three main sections corresponding to basic, intermediate and
advanced PMake usage. If you already know Make well, you will only need to skim Chap-
ter 2, The Basics of PMake (there are some aspects of PMake that I consider basic to its use
that did not exist in Make). Things in Chapter 3, Short-cuts and Other Nice Things make life
much easier, while those in Chapter 4, PMake for Gods are strictly for those who know what
they are doing. Glossary of Jargon has definitions for the jargon I use and Chapter 5, An-
swers to Exercises contains possible solutions to the problems presented throughout the
tutorial.

Chapter 2. The Basics of
PMake
PMake takes as input a file that tells which files depend on which other files to be complete
and what to do about files that are “out-of-date”. This file is known as a “makefile” and
is usually kept in the top-most directory of the system to be built. While you can call the
makefile anything you want, PMake will look for Makefile and makefile (in that order)
in the current directory if you do not tell it otherwise. To specify a different makefile, use
the -f flag, e.g.

% pmake -f program.mk

A makefile has four different types of lines in it:

• File dependency specifications

• Creation commands

• Variable assignments

• Comments, include statements and conditional directives

Any line may be continued over multiple lines by ending it with a backslash. The back-
slash, following newline and any initial whitespace on the following line are compressed
into a single space before the input line is examined by PMake.

2.1. Dependency Lines
As mentioned in the introduction, in any system, there are dependencies between the
files that make up the system. For instance, in a program made up of several C source
files and one header file, the C files will need to be re-compiled should the header file be
changed. For a document of several chapters and one macro file, the chapters will need
to be reprocessed if any of the macros changes. These are dependencies and are specified
by means of dependency lines in the makefile.

On a dependency line, there are targets and sources, separated by a one- or two-character
operator. The targets “depend” on the sources and are usually created from them. Any
number of targets and sources may be specified on a dependency line. All the targets in
the line are made to depend on all the sources. Targets and sources need not be actual
files, but every source must be either an actual file or another target in the makefile. If
you run out of room, use a backslash at the end of the line to continue onto the next one.

Any file may be a target and any file may be a source, but the relationship between the
two (or however many) is determined by the “operator” that separates them. Three types

Dependency Lines

4

of operators exist: one specifies that the datedness of a target is determined by the state
of its sources, while another specifies other files (the sources) that need to be dealt with
before the target can be re-created. The third operator is very similar to the first, with the
additional condition that the target is out-of-date if it has no sources. These operations
are represented by the colon, the exclamation point and the double-colon, respectively,
and are mutually exclusive. Their exact semantics are as follows:

: If a colon is used, a target on the line is
considered to be “out-of-date” (and in need
of creation) if any of the sources has been
modified more recently than the target, or
the target does not exist. Under this opera-
tion, steps will be taken to re-create the tar-
get only if it is found to be out-of-date by
using these two rules.

! If an exclamation point is used, the target
will always be re-created, but this will not
happen until all of its sources have been ex-
amined and re-created, if necessary.

:: If a double-colon is used, a target is “out-of-
date” if any of the sources has been modi-
fied more recently than the target, or the
target does not exist, or the target has no
sources. If the target is out-of-date accord-
ing to these rules, it will be re-created. This
operator also does something else to the
targets, but I will go into that in the next
section (see Shell Commands).

Enough words, now for an example. Take that C program I mentioned earlier. Say there
are three C files (a.c, b.c and c.c) each of which includes the file defs.h . The dependen-
cies between the files could then be expressed as follows:

program : a.o b.o c.o

a.o b.o c.o : defs.h

a.o : a.c

b.o : b.c

c.o : c.c

You may be wondering at this point, where a.o, b.o and c.o came in and why they depend
on defs.h and the C files do not. The reason is quite simple: program cannot be made by

Chapter 2. The Basics of PMake

5

linking together .c files—it must be made from .o files. Likewise, if you change defs.h , it
is not the .c files that need to be re-created, it is the .o files. If you think of dependencies
in these terms—which files (targets) need to be created from which files (sources)—you
should have no problems.

An important thing to notice about the above example, is that all the .o files appear as
targets on more than one line. This is perfectly all right: the target is made to depend on
all the sources mentioned on all the dependency lines. For example, a.o depends on both
defs.h and a.c.

The order of the dependency lines in the makefile is important: the first target on the first
dependency line in the makefile will be the one that gets made if you do not say otherwise.
That is why program comes first in the example makefile, above.

Both targets and sources may contain the standard C-Shell wildcard characters ({, }, *, ?,
[, and]), but the non-curly-brace ones may only appear in the final component (the file
portion) of the target or source. The characters mean the following things:

{} These enclose a comma-separated list
of options and cause the pattern to
be expanded once for each element
of the list. Each expansion contains a
different element. For example, src/
{whiffle,beep,fish}.c expands to the
three words src/whiffle.c , src/beep.c ,
and src/fish.c . These braces may be nest-
ed and, unlike the other wildcard charac-
ters, the resulting words need not be ac-
tual files. All other wildcard characters are
expanded using the files that exist when
PMake is started.

* This matches zero or more characters of
any sort. src/*.c will expand to the same
three words as above as long as src contains
those three files (and no other files that end
in .c).>

? Matches any single character.

[] This is known as a character class and con-
tains either a list of single characters, or a
series of character ranges (a-z, for example
means all characters between a and z), or
both. It matches any single character con-
tained in the list. For example, [A-Za-z]

Shell Commands

6

will match all letters, while [0123456789]
will match all numbers.

2.2. Shell Commands
“Is not that nice,” you say to yourself, “but how are files actually ``re-created'', as he
likes to spell it?” The re-creation is accomplished by commands you place in the makefile.
These commands are passed to the Bourne shell (better known as /bin/sh) to be executed
and are expected to do what is necessary to update the target file (PMake does not actually
check to see if the target was created. It just assumes it is there).

Shell commands in a makefile look a lot like shell commands you would type at a terminal,
with one important exception: each command in a makefile must be preceded by at least
one tab.

Each target has associated with it a shell script made up of one or more of these shell
commands. The creation script for a target should immediately follow the dependency
line for that target. While any given target may appear on more than one dependency
line, only one of these dependency lines may be followed by a creation script, unless the
:: operator was used on the dependency line.

If the double-colon was used, each dependency line for the target may be followed by a
shell script. That script will only be executed if the target on the associated dependency
line is out-of-date with respect to the sources on that line, according to the rules I gave
earlier. I'll give you a good example of this later on.

To expand on the earlier makefile, you might add commands as follows:

program : a.o b.o c.o
 cc a.o b.o c.o -o program

a.o b.o c.o : defs.h
a.o : a.c
 cc -c a.c

b.o : b.c
 cc -c b.c

c.o : c.c
 cc -c c.c

Something you should remember when writing a makefile is, the commands will be exe-
cuted if the target on the dependency line is out-of-date, not the sources. In this example,
the command cc -c a.c will be executed if a.o is out-of-date. Because of the : operator,
this means that should a.c or defs.h have been modified more recently than a.o, the
command will be executed (a.o will be considered out-of-date).

Chapter 2. The Basics of PMake

7

Remember how I said the only difference between a makefile shell command and a reg-
ular shell command was the leading tab? I lied. There is another way in which makefile
commands differ from regular ones. The first two characters after the initial whitespace
are treated specially. If they are any combination of @ and -, they cause PMake to do dif-
ferent things.

In most cases, shell commands are printed before they are actually executed. This is to
keep you informed of what is going on. If an @ appears, however, this echoing is sup-
pressed. In the case of an echo command, say

echo Linking index

it would be rather silly to see

echo Linking index
Linking index

so PMake allows you to place an @ before the command to prevent the command from
being printed:

@echo Linking index

The other special character is the -. In case you did not know, shell commands finish with
a certain “exit status”. This status is made available by the operating system to whatever
program invoked the command. Normally this status will be 0 if everything went ok and
non-zero if something went wrong. For this reason, PMake will consider an error to have
occurred if one of the shells it invokes returns a non-zero status. When it detects an error,
PMake's usual action is to abort whatever it is doing and exit with a non-zero status itself
(any other targets that were being created will continue being made, but nothing new
will be started. PMake will exit after the last job finishes). This behavior can be altered,
however, by placing a - at the front of a command (e.g. -mv index index.old), certain
command-line arguments, or doing other things, to be detailed later. In such a case, the
non-zero status is simply ignored and PMake keeps chugging along.

Because all the commands are given to a single shell to execute, such things as setting shell
variables, changing directories, etc., last beyond the command in which they are found.
This also allows shell compound commands (like for loops) to be entered in a natural man-
ner. Since this could cause problems for some makefiles that depend on each command
being executed by a single shell, PMake has a -B flag (it stands for backwards-compatible)
that forces each command to be given to a separate shell. It also does several other things,
all of which I discourage since they are now old-fashioned.

A target's shell script is fed to the shell on its (the shell's) input stream. This means that
any commands, such as ci that need to get input from the terminal will not work right
– they will get the shell's input, something they probably will not find to their liking. A
simple way around this is to give a command like this:

ci $(SRCS) < /dev/tty

Variables

8

This would force the program's input to come from the terminal. If you cannot do this
for some reason, your only other alternative is to use PMake in its fullest compatibility
mode. See “Compatibility” in Chapter 4, PMake for Gods.

2.3. Variables
PMake, like Make before it, has the ability to save text in variables to be recalled later at
your convenience. Variables in PMake are used much like variables in the shell and, by
tradition, consist of all upper-case letters (you do not have to use all upper-case letters. In
fact there is nothing to stop you from calling a variable @^&$%$. Just tradition). Variables
are assigned-to using lines of the form:

VARIABLE = value

appended-to by:

VARIABLE += value

conditionally assigned-to (if the variable is not already defined) by:

VARIABLE ?= value

and assigned-to with expansion (i.e. the value is expanded (see below) before being as-
signed to the variable—useful for placing a value at the beginning of a variable, or other
things) by:

VARIABLE := value

Any whitespace before value is stripped off. When appending, a space is placed between
the old value and the stuff being appended.

The final way a variable may be assigned to is using:

VARIABLE != shell-command

In this case, shell-command has all its variables expanded (see below) and is passed off
to a shell to execute. The output of the shell is then placed in the variable. Any newlines
(other than the final one) are replaced by spaces before the assignment is made. This is
typically used to find the current directory via a line like:

CWD != pwd

Note
This is intended to be used to execute commands that produce small
amounts of output (e.g. pwd). The implementation is less than intel-

Chapter 2. The Basics of PMake

9

ligent and will likely freeze if you execute something that produces
thousands of bytes of output (8 Kb is the limit on many UNIX® sys-
tems). The value of a variable may be retrieved by enclosing the
variable name in parentheses or curly braces and preceding the
whole thing with a dollar sign.

For example, to set the variable CFLAGS to the string -I/sprite/src/lib/libc -O, you
would place a line:

CFLAGS = -I/sprite/src/lib/libc -O

in the makefile and use the word $(CFLAGS) wherever you would like the string -I/
sprite/src/lib/libc -O to appear. This is called variable expansion.

Note
Unlike Make, PMake will not expand a variable unless it knows the
variable exists. E.g. if you have a ${i} in a shell command and you
have not assigned a value to the variable i (the empty string is
considered a value, by the way), where Make would have substi-
tuted the empty string, PMake will leave the ${i} alone. To keep
PMake from substituting for a variable it knows, precede the dol-
lar sign with another dollar sign (e.g. to pass ${HOME} to the shell,
use $${HOME}). This causes PMake, in effect, to expand the $ macro,
which expands to a single $.

For compatibility, Make's style of variable expansion will be used if you invoke PMake
with any of the compatibility flags (-V, -B or -M. The -V flag alters just the variable expan-
sion). There are two different times at which variable expansion occurs: when parsing a
dependency line, the expansion occurs immediately upon reading the line. If any variable
used on a dependency line is undefined, PMake will print a message and exit. Variables
in shell commands are expanded when the command is executed. Variables used inside
another variable are expanded whenever the outer variable is expanded (the expansion
of an inner variable has no effect on the outer variable. For example, if the outer variable
is used on a dependency line and in a shell command, and the inner variable changes val-
ue between when the dependency line is read and the shell command is executed, two
different values will be substituted for the outer variable).

Variables come in four flavors, though they are all expanded the same and all look about
the same. They are (in order of expanding scope):

• Local variables.

Local Variables

10

• Command-line variables.

• Global variables.

• Environment variables.

The classification of variables does not matter much, except that the classes are searched
from the top (local) to the bottom (environment) when looking up a variable. The first
one found wins.

2.3.1. Local Variables

Each target can have as many as seven local variables. These are variables that are only
“visible” within that target's shell script and contain such things as the target's name,
all of its sources (from all its dependency lines), those sources that were out-of-date, etc.
Four local variables are defined for all targets. They are:

.TARGET
The name of the target.

.OODATE
The list of the sources for the target that were considered out-of-date. The order in
the list is not guaranteed to be the same as the order in which the dependencies were
given.

.ALLSRC
The list of all sources for this target in the order in which they were given.

.PREFIX
The target without its suffix and without any leading path. E.g. for the target ../../
lib/compat/fsRead.c , this variable would contain fsRead.

Three other local variables are set only for certain targets under special circumstances.
These are the .IMPSRC, .ARCHIVE, and .MEMBER variables. When they are set and how
they are used is described later.

Four of these variables may be used in sources as well as in shell scripts. These are .TARGET,
.PREFIX, .ARCHIVE and .MEMBER. The variables in the sources are expanded once for each
target on the dependency line, providing what is known as a “dynamic source,” allowing
you to specify several dependency lines at once. For example:

$(OBJS) : $(.PREFIX).c

will create a dependency between each object file and its corresponding C source file.

2.3.2. Command-line Variables

Command-line variables are set when PMake is first invoked by giving a variable assign-
ment as one of the arguments. For example:

Chapter 2. The Basics of PMake

11

pmake "CFLAGS = -I/sprite/src/lib/libc -O"

would make CFLAGS be a command-line variable with the given value. Any assignments to
CFLAGS in the makefile will have no effect, because once it is set, there is (almost) nothing
you can do to change a command-line variable (the search order, you see). Command-line
variables may be set using any of the four assignment operators, though only = and ?
= behave as you would expect them to, mostly because assignments to command-line
variables are performed before the makefile is read, thus the values set in the makefile
are unavailable at the time. += is the same as =, because the old value of the variable is
sought only in the scope in which the assignment is taking place (for reasons of efficiency
that I will not get into here). := and ?= will work if the only variables used are in the
environment. != is sort of pointless to use from the command line, since the same effect
can no doubt be accomplished using the shell's own command substitution mechanisms
(backquotes and all that).

2.3.3. Global Variables

Global variables are those set or appended-to in the makefile. There are two classes of
global variables: those you set and those PMake sets. As I said before, the ones you set can
have any name you want them to have, except they may not contain a colon or an excla-
mation point. The variables PMake sets (almost) always begin with a period and always
contain upper-case letters, only. The variables are as follows:

.PMAKE
The name by which PMake was invoked is stored in this variable. For compatibility,
the name is also stored in the MAKE variable.

.MAKEFLAGS
All the relevant flags with which PMake was invoked. This does not include such
things as -f or variable assignments. Again for compatibility, this value is stored in
the MFLAGS variable as well.

Two other variables, .INCLUDES and .LIBS, are covered in the section on special targets
in Chapter 3, Short-cuts and Other Nice Things.

Global variables may be deleted using lines of the form:

#undef variable

The # must be the first character on the line. Note that this may only be done on global
variables.

2.3.4. Environment Variables

Environment variables are passed by the shell that invoked PMake and are given by PMake
to each shell it invokes. They are expanded like any other variable, but they cannot be
altered in any way.

Comments

12

One special environment variable, PMAKE , is examined by PMake for command-line flags,
variable assignments, etc., it should always use. This variable is examined before the ac-
tual arguments to PMake are. In addition, all flags given to PMake, either through the
PMAKE variable or on the command line, are placed in this environment variable and ex-
ported to each shell PMake executes. Thus recursive invocations of PMake automatically
receive the same flags as the top-most one.

Using all these variables, you can compress the sample makefile even more:

OBJS = a.o b.o c.o

program : $(OBJS)
 cc $(.ALLSRC) -o $(.TARGET)

$(OBJS) : defs.h

a.o : a.c
 cc -c a.c

b.o : b.c
 cc -c b.c

c.o : c.c
 cc -c c.c

2.4. Comments
Comments in a makefile start with a # character and extend to the end of the line. They
may appear anywhere you want them, except in a shell command (though the shell will
treat it as a comment, too). If, for some reason, you need to use the # in a variable or on a
dependency line, put a backslash in front of it. PMake will compress the two into a single #.

Note

This is not true if PMake is operating in full-compatibility mode).

2.5. Parallelism
PMake was specifically designed to re-create several targets at once, when possible. You
do not have to do anything special to cause this to happen (unless PMake was configured
to not act in parallel, in which case you will have to make use of the -L and -J flags (see
below)), but you do have to be careful at times.

Chapter 2. The Basics of PMake

13

There are several problems you are likely to encounter. One is that some makefiles (and
programs) are written in such a way that it is impossible for two targets to be made at
once. The program xstr, for example, always modifies the files strings and x.c. There is
no way to change it. Thus you cannot run two of them at once without something being
trashed. Similarly, if you have commands in the makefile that always send output to the
same file, you will not be able to make more than one target at once unless you change
the file you use. You can, for instance, add a $$$$ to the end of the file name to tack on
the process ID of the shell executing the command (each $$ expands to a single $, thus
giving you the shell variable $$). Since only one shell is used for all the commands, you
will get the same file name for each command in the script.

The other problem comes from improperly-specified dependencies that worked in Make
because of its sequential, depth-first way of examining them. While I do not want to go
into depth on how PMake works (look in Chapter 4, PMake for Gods if you are interested),
I will warn you that files in two different levels of the dependency tree may be examined
in a different order in PMake than they were in Make. For example, given the makefile:

a :

b c b : d

PMake will examine the targets in the order c, d, b, a. If the makefile's author expected
PMake to abort before making c if an error occurred while making b, or if b needed to exist
before c was made, (s)he will be sorely disappointed. The dependencies are incomplete,
since in both these cases, c would depend on b. So watch out.

Another problem you may face is that, while PMake is set up to handle the output from
multiple jobs in a graceful fashion, the same is not so for input. It has no way to regulate
input to different jobs, so if you use the redirection from /dev/tty I mentioned earlier,
you must be careful not to run two of the jobs at once.

2.6. Writing and Debugging a Makefile
Now you know most of what is in a Makefile, what do you do next? There are two choices:
use one of the uncommonly-available makefile generators or write your own makefile
(I leave out the third choice of ignoring PMake and doing everything by hand as being
beyond the bounds of common sense).

When faced with the writing of a makefile, it is usually best to start from first principles:
just what are you trying to do? What do you want the makefile finally to produce? To
begin with a somewhat traditional example, let's say you need to write a makefile to cre-
ate a program, expr, that takes standard infix expressions and converts them to prefix
form (for no readily apparent reason). You have got three source files, in C, that make
up the program: main.c , parse.c , and output.c . Harking back to my pithy advice about
dependency lines, you write the first line of the file:

Writing and Debugging a Makefile

14

expr : main.o parse.o output.o

because you remember expr is made from .o files, not .c files. Similarly for the .o files
you produce the lines:

main.o : main.c

parse.o : parse.c

output.o : output.c

main.o parse.o output.o : defs.h

Great. You have now got the dependencies specified. What you need now is commands.
These commands, remember, must produce the target on the dependency line, usually by
using the sources you have listed. You remember about local variables? Good, so it should
come to you as no surprise when you write:

expr : main.o parse.o output.o
 cc -o $(.TARGET) $(.ALLSRC)

Why use the variables? If your program grows to produce postfix expressions too (which,
of course, requires a name change or two), it is one fewer place you have to change the
file. You cannot do this for the object files, however, because they depend on their corre-
sponding source files and defs.h , thus if you said:

cc -c $(.ALLSRC)

you will get (for main.o):

cc -c main.c defs.h

which is wrong. So you round out the makefile with these lines:

main.o : main.c
 cc -c main.c

parse.o : parse.c
 cc -c parse.c

output.o : output.c
 cc -c output.c

The makefile is now complete and will, in fact, create the program you want it to without
unnecessary compilations or excessive typing on your part. There are two things wrong
with it, however (aside from it being altogether too long, something I will address in Chap-
ter 3, Short-cuts and Other Nice Things):

1. The string main.o parse.o output.o is repeated twice, necessitating two changes
when you add postfix (you were planning on that, were not you?). This is in direct
violation of de Boor's First Rule of writing makefiles:

Chapter 2. The Basics of PMake

15

Anything that needs to be written more than once should be placed in a variable. I
cannot emphasize this enough as being very important to the maintenance of a make-
file and its program.

2. There is no way to alter the way compilations are performed short of editing the make-
file and making the change in all places. This is evil and violates de Boor's Second Rule,
which follows directly from the first:

Any flags or programs used inside a makefile should be placed in a variable so they
may be changed, temporarily or permanently, with the greatest ease.

The makefile should more properly read:

OBJS = main.o parse.o output.o

expr : $(OBJS)
 $(CC) $(CFLAGS) -o $(.TARGET) $(.ALLSRC)

main.o : main.c
 $(CC) $(CFLAGS) -c main.c

parse.o : parse.c
 $(CC) $(CFLAGS) -c parse.c

output.o : output.c
 $(CC) $(CFLAGS) -c output.c

$(OBJS) : defs.h

Alternatively, if you like the idea of dynamic sources mentioned in Section 2.3.1, “Local
Variables”, you could write it like this:

OBJS = main.o parse.o output.o

expr : $(OBJS)
 $(CC) $(CFLAGS) -o $(.TARGET) $(.ALLSRC)

$(OBJS) : $(.PREFIX).c defs.h
 $(CC) $(CFLAGS) -c $(.PREFIX).c

These two rules and examples lead to de Boor's First Corollary: Variables are your friends.

Once you have written the makefile comes the sometimes-difficult task of making sure the
darn thing works. Your most helpful tool to make sure the makefile is at least syntactically
correct is the -n flag, which allows you to see if PMake will choke on the makefile. The
second thing the -n flag lets you do is see what PMake would do without it actually doing
it, thus you can make sure the right commands would be executed were you to give PMake
its head.

Invoking PMake

16

When you find your makefile is not behaving as you hoped, the first question that comes
to mind (after “What time is it, anyway?”) is “Why not?” In answering this, two flags will
serve you well: -d m and “-p 2”. The first causes PMake to tell you as it examines each
target in the makefile and indicate why it is deciding whatever it is deciding. You can
then use the information printed for other targets to see where you went wrong. The “-
p 2” flag makes PMake print out its internal state when it is done, allowing you to see
that you forgot to make that one chapter depend on that file of macros you just got a new
version of. The output from “-p 2” is intended to resemble closely a real makefile, but with
additional information provided and with variables expanded in those commands PMake
actually printed or executed.

Something to be especially careful about is circular dependencies. For example:

a : b

b : c d

d : a

In this case, because of how PMake works, c is the only thing PMake will examine, because
d and a will effectively fall off the edge of the universe, making it impossible to examine
b (or them, for that matter). PMake will tell you (if run in its normal mode) all the tar-
gets involved in any cycle it looked at (i.e. if you have two cycles in the graph (naughty,
naughty), but only try to make a target in one of them, PMake will only tell you about that
one. You will have to try to make the other to find the second cycle). When run as Make,
it will only print the first target in the cycle.

2.7. Invoking PMake
PMake comes with a wide variety of flags to choose from. They may appear in any order,
interspersed with command-line variable assignments and targets to create. The flags are
as follows:

-d what
This causes PMake to spew out debugging information that may prove useful to you.
If you cannot figure out why PMake is doing what it is doing, you might try using this
flag. The what parameter is a string of single characters that tell PMake what aspects
you are interested in. Most of what I describe will make little sense to you, unless you
have dealt with Make before. Just remember where this table is and come back to it
as you read on. The characters and the information they produce are as follows:

a Archive searching and caching.

c Conditional evaluation.

d The searching and caching of directories.

Chapter 2. The Basics of PMake

17

j Various snippets of information related
to the running of the multiple shells. Not
particularly interesting.

m The making of each target: what target is
being examined; when it was last modi-
fied; whether it is out-of-date; etc.

p Makefile parsing.

r Remote execution.

s The application of suffix-transformation
rules. (See Chapter 3, Short-cuts and Other
Nice Things.)

t The maintenance of the list of targets.

v Variable assignment.

Of these all, the m and s letters will be most useful to you. If the -d is the final argu-
ment or the argument from which it would get these key letters (see below for a note
about which argument would be used) begins with a –, all of these debugging flags
will be set, resulting in massive amounts of output.

-f makefile
Specify a makefile to read different from the standard makefiles (Makefile or make-
file). If makefile is -, PMake uses the standard input. This is useful for making quick
and dirty makefiles.

-h
Prints out a summary of the various flags PMake accepts. It can also be used to find
out what level of concurrency was compiled into the version of PMake you are using
(look at -J and -L) and various other information on how PMake was configured.

-i
If you give this flag, PMake will ignore non-zero status returned by any of its shells.
It is like placing a - before all the commands in the makefile.

-k
This is similar to -i in that it allows PMake to continue when it sees an error, but
unlike -i, where PMake continues blithely as if nothing went wrong, -k causes it
to recognize the error and only continue work on those things that do not depend
on the target, either directly or indirectly (through depending on something that
depends on it), whose creation returned the error. The k is for “keep going”.

-l
PMake has the ability to lock a directory against other people executing it in the same
directory (by means of a file called LOCK.make that it creates and checks for in the

Invoking PMake

18

directory). This is a Good Thing because two people doing the same thing in the same
place can be disastrous for the final product (too many cooks and all that). Whether
this locking is the default is up to your system administrator. If locking is on, -l will
turn it off, and vice versa. Note that this locking will not prevent you from invoking
PMake twice in the same place–if you own the lock file, PMake will warn you about
it but continue to execute.

-m directory
Tells PMake another place to search for included makefiles via the <filename> style.
Several -m options can be given to form a search path. If this construct is used the
default system makefile search path is completely overridden.

-n
This flag tells PMake not to execute the commands needed to update the out-of-date
targets in the makefile. Rather, PMake will simply print the commands it would have
executed and exit. This is particularly useful for checking the correctness of a make-
file. If PMake does not do what you expect it to, it is a good chance the makefile is
wrong.

-p number
This causes PMake to print its input in a reasonable form, though not necessarily one
that would make immediate sense to anyone but me. The number is a bitwise OR of 1
and 2, where 1 means it should print the input before doing any processing and 2 says
it should print it after everything has been re-created. Thus -p 3 would print it twice-
a-once before processing and once after (you might find the difference between the
two interesting). This is mostly useful to me, but you may find it informative in some
bizarre circumstances.

-q
If you give PMake this flag, it will not try to re-create anything. It will just see if
anything is out-of-date and exit non-zero if so.

-r
When PMake starts up, it reads a default makefile that tells it what sort of system it
is on and gives it some idea of what to do if you do not tell it anything. I will tell you
about it in Chapter 3, Short-cuts and Other Nice Things. If you give this flag, PMake will
not read the default makefile.

-s
This causes PMake to not print commands before they are executed. It is the equiv-
alent of putting an “@” before every command in the makefile.

-t
Rather than try to re-create a target, PMake will simply “touch” it so as to make it
appear up-to-date. If the target did not exist before, it will when PMake finishes, but
if the target did exist, it will appear to have been updated.

Chapter 2. The Basics of PMake

19

-v
Targets can still be created in parallel, however. This is the mode PMake will enter
if it is invoked either as smake or vmake .

-x
This tells PMake it is OK to export jobs to other machines, if they are available. It is
used when running in Make mode, as exporting in this mode tends to make things
run slower than if the commands were just executed locally.

-B
Forces PMake to be as backwards-compatible with Make as possible while still being
itself. This includes:

• Executing one shell per shell command

• Expanding anything that looks even vaguely like a variable, with the empty string
replacing any variable PMake does not know.

• Refusing to allow you to escape a # with a backslash.

• Permitting undefined variables on dependency lines and conditionals (see below).
Normally this causes PMake to abort.

-C
This nullifies any and all compatibility mode flags you may have given or implied up
to the time the -C is encountered. It is useful mostly in a makefile that you wrote
for PMake to avoid bad things happening when someone runs PMake as make or has
things set in the environment that tell it to be compatible. -C is not placed in the
PMAKE environment variable or the .MAKEFLAGS or MFLAGS global variables.

-D variable
Allows you to define a variable to have “1” as its value. The variable is a global vari-
able, not a command-line variable. This is useful mostly for people who are used to
the C compiler arguments and those using conditionals, which I will get into in Sec-
tion 4.3, “On the Condition...”.

-I directory
Tells PMake another place to search for included makefiles. Yet another thing to be
explained in Chapter 3, Short-cuts and Other Nice Things (Section 3.2, “Including Other
Makefiles”, to be precise).

-J number
Gives the absolute maximum number of targets to create at once on both local and
remote machines.

Invoking PMake

20

-L number
This specifies the maximum number of targets to create on the local machine at once.
This may be 0, though you should be wary of doing this, as PMake may hang until a
remote machine becomes available, if one is not available when it is started.

-M
This is the flag that provides absolute, complete, full compatibility with Make. It still
allows you to use all but a few of the features of PMake, but it is non-parallel. This is
the mode PMake enters if you call it make.

-P
When creating targets in parallel, several shells are executing at once, each wanting
to write its own two cents'-worth to the screen. This output must be captured by
PMake in some way in order to prevent the screen from being filled with garbage
even more indecipherable than you usually see. PMake has two ways of doing this,
one of which provides for much cleaner output and a clear separation between the
output of different jobs, the other of which provides a more immediate response so
one can tell what is really happening. The former is done by notifying you when the
creation of a target starts, capturing the output and transferring it to the screen all
at once when the job finishes. The latter is done by catching the output of the shell
(and its children) and buffering it until an entire line is received, then printing that
line preceded by an indication of which job produced the output. Since I prefer this
second method, it is the one used by default. The first method will be used if you give
the -P flag to PMake.

-V
As mentioned before, the -V flag tells PMake to use Make's style of expanding vari-
ables, substituting the empty string for any variable it does not know.

-W
There are several times when PMake will print a message at you that is only a warn-
ing, i.e. it can continue to work in spite of your having done something silly (such as
forgotten a leading tab for a shell command). Sometimes you are well aware of silly
things you have done and would like PMake to stop bothering you. This flag tells it
to shut up about anything non-fatal.

-X
This flag causes PMake to not attempt to export any jobs to another machine.

Several flags may follow a single -. Those flags that require arguments take them from
successive parameters. For example:

pmake -fDnI server.mk DEBUG /chip2/X/server/include

will cause PMake to read server.mk as the input makefile, define the variable DEBUG as
a global variable and look for included makefiles in the directory /chip2/X/server/in-
clude.

Chapter 2. The Basics of PMake

21

2.8. Summary
A makefile is made of four types of lines:

• Dependency lines

• Creation commands

• Variable assignments

• Comments, include statements and conditional directives

A dependency line is a list of one or more targets, an operator (:, ::, or !), and a list of
zero or more sources. Sources may contain wildcards and certain local variables.

A creation command is a regular shell command preceded by a tab. In addition, if the first
two characters after the tab (and other whitespace) are a combination of @ or -, PMake
will cause the command to not be printed (if the character is @) or errors from it to be
ignored (if -). A blank line, dependency line or variable assignment terminates a creation
script. There may be only one creation script for each target with a : or ! operator.

Variables are places to store text. They may be unconditionally assigned-to using the =
operator, appended-to using the += operator, conditionally (if the variable is undefined)
assigned-to with the ?= operator, and assigned-to with variable expansion with the :=
operator. The output of a shell command may be assigned to a variable using the != oper-
ator. Variables may be expanded (their value inserted) by enclosing their name in paren-
theses or curly braces, preceded by a dollar sign. A dollar sign may be escaped with an-
other dollar sign. Variables are not expanded if PMake does not know about them. There
are seven local variables: .TARGET, .ALLSRC, .OODATE, .PREFIX, .IMPSRC, .ARCHIVE , and
.MEMBER. Four of them (.TARGET, .PREFIX, .ARCHIVE , and .MEMBER) may be used to specify
“dynamic sources”. Variables are good. Know them. Love them. Live them.

Debugging of makefiles is best accomplished using the -n, -d m, and -p 2 flags.

Chapter 3. Short-cuts and
Other Nice Things
Based on what I have told you so far, you may have gotten the impression that PMake
is just a way of storing away commands and making sure you do not forget to compile
something. Good. That is just what it is. However, the ways I have described have been
inelegant, at best, and painful, at worst. This chapter contains things that make the writ-
ing of makefiles easier and the makefiles themselves shorter and easier to modify (and,
occasionally, simpler). In this chapter, I assume you are somewhat more familiar with
Sprite (or UNIX®, if that is what you are using) than I did in Chapter 2, The Basics of PMake,
just so you are on your toes. So without further ado…

3.1. Transformation Rules
As you know, a file's name consists of two parts: a base name, which gives some hint as to
the contents of the file, and a suffix, which usually indicates the format of the file. Over
the years, as UNIX® has developed, naming conventions, with regard to suffixes, have
also developed that have become almost as incontrovertible as Law. E.g. a file ending in
.c is assumed to contain C source code; one with a .o suffix is assumed to be a compiled,
relocatable object file that may be linked into any program; a file with a .ms suffix is usu-
ally a text file to be processed by Troff with the -ms macro package, and so on. One of the
best aspects of both Make and PMake comes from their understanding of how the suffix
of a file pertains to its contents and their ability to do things with a file based solely on
its suffix. This ability comes from something known as a transformation rule. A transfor-
mation rule specifies how to change a file with one suffix into a file with another suffix.

A transformation rule looks much like a dependency line, except the target is made of
two known suffixes stuck together. Suffixes are made known to PMake by placing them
as sources on a dependency line whose target is the special target .SUFFIXES. E.g.:

.SUFFIXES : .o .c

.c.o :
 $(CC) $(CFLAGS) -c $(.IMPSRC)

The creation script attached to the target is used to trans form a file with the first suffix
(in this case, .c) into a file with the second suffix (here, .o). In addition, the target inherits
whatever attributes have been applied to the transformation rule. The simple rule given
above says that to transform a C source file into an object file, you compile it using cc with
the -c flag. This rule is taken straight from the system makefile. Many transformation
rules (and suffixes) are defined there, and I refer you to it for more examples (type pmake
-h to find out where it is).

There are several things to note about the transformation rule given above:

Transformation Rules

24

1. The .IMPSRC variable. This variable is set to the “implied source” (the file from which
the target is being created; the one with the first suffix), which, in this case, is the .c
file.

2. The CFLAGS variable. Almost all of the transformation rules in the system makefile are
set up using variables that you can alter in your makefile to tailor the rule to your
needs. In this case, if you want all your C files to be compiled with the -g flag, to provide
information for dbx, you would set the CFLAGS variable to contain -g (CFLAGS = -g)
and PMake would take care of the rest.

To give you a quick example, the makefile in Section 2.3.4, “Environment Variables” could
be changed to this:

OBJS = a.o b.o c.o
program : $(OBJS)
 $(CC) -o $(.TARGET) $(.ALLSRC)
$(OBJS) : defs.h

The transformation rule I gave above takes the place of the 6 lines 1:

a.o : a.c
 cc -c a.c
b.o : b.c
 cc -c b.c
c.o : c.c
 cc -c c.c

Now you may be wondering about the dependency between the .o and .c files – it is not
mentioned anywhere in the new makefile. This is because it is not needed: one of the
effects of applying a transformation rule is the target comes to depend on the implied
source. That's why it is called the implied source.

For a more detailed example. Say you have a makefile like this:

a.out : a.o b.o
 $(CC) $(.ALLSRC)

and a directory set up like this:

total 4
-rw-rw-r-- 1 deboor 34 Sep 7 00:43 Makefile
-rw-rw-r-- 1 deboor 119 Oct 3 19:39 a.c
-rw-rw-r-- 1 deboor 201 Sep 7 00:43 a.o
-rw-rw-r-- 1 deboor 69 Sep 7 00:43 b.c

While just typing pmake will do the right thing, it is much more informative to type pmake
-d s. This will show you what PMake is up to as it processes the files. In this case, PMake
prints the following:

1This is also somewhat cleaner, I think, than the dynamic source solution presented in Section 2.6, “Writing and

Debugging a Makefile”.

Chapter 3. Short-cuts and Other Nice
Things

25

Suff_FindDeps (a.out)
 using existing source a.o
 applying .o -> .out to "a.o"
Suff_FindDeps (a.o)
 trying a.c...got it
 applying .c -> .o to "a.c"
Suff_FindDeps (b.o)
 trying b.c...got it
 applying .c -> .o to "b.c"
Suff_FindDeps (a.c)
 trying a.y...not there
 trying a.l...not there
 trying a.c,v...not there
 trying a.y,v...not there
 trying a.l,v...not there
Suff_FindDeps (b.c)
 trying b.y...not there
 trying b.l...not there
 trying b.c,v...not there
 trying b.y,v...not there
 trying b.l,v...not there
--- a.o ---
cc -c a.c
--- b.o ---
cc -c b.c
--- a.out ---
cc a.o b.o

Suff_FindDeps is the name of a function in PMake that is called to check for implied
sources for a target using transformation rules. The transformations it tries are, natural-
ly enough, limited to the ones that have been defined (a transformation may be defined
multiple times, by the way, but only the most recent one will be used). You will notice,
however, that there is a definite order to the suffixes that are tried. This order is set by
the relative positions of the suffixes on the .SUFFIXES line – the earlier a suffix appears,
the earlier it is checked as the source of a transformation. Once a suffix has been defined,
the only way to change its position in the pecking order is to remove all the suffixes (by
having a .SUFFIXES dependency line with no sources) and redefine them in the order
you want. (Previously-defined transformation rules will be automatically redefined as the
suffixes they involve are re-entered.) Another way to affect the search order is to make
the dependency explicit. In the above example, a.out depends on a.o and b.o. Since a
transformation exists from .o to .out, PMake uses that, as indicated by the using ex-
isting source a.o message.

The search for a transformation starts from the suffix of the target and continues through
all the defined transformations, in the order dictated by the suffix ranking, until an exist-
ing file with the same base (the target name minus the suffix and any leading directories)
is found. At that point, one or more transformation rules will have been found to change
the one existing file into the target.

Transformation Rules

26

For example, ignoring what's in the system makefile for now, say you have a makefile
like this:

.SUFFIXES : .out .o .c .y .l

.l.c :
 lex $(.IMPSRC)
 mv lex.yy.c $(.TARGET)
.y.c :
 yacc $(.IMPSRC)
 mv y.tab.c $(.TARGET)
.c.o :
 cc -c $(.IMPSRC)
.o.out :
 cc -o $(.TARGET) $(.IMPSRC)

and the single file jive.l . If you were to type pmake -rd ms jive.out , you would get
the following output for jive.out :

Suff_FindDeps (jive.out)
 trying jive.o...not there
 trying jive.c...not there
 trying jive.y...not there
 trying jive.l...got it
 applying .l -> .c to "jive.l"
 applying .c -> .o to "jive.c"
 applying .o -> .out to "jive.o"

and this is why: PMake starts with the target jive.out , figures out its suffix (.out) and
looks for things it can transform to a .out file. In this case, it only finds .o, so it looks
for the file jive.o . It fails to find it, so it looks for transformations into a .o file. Again
it has only one choice: .c. So it looks for jive.c and, as you know, fails to find it. At this
point it has two choices: it can create the .c file from either a .y file or a .l file. Since .y
came first on the .SUFFIXES line, it checks for jive.y first, but can not find it, so it looks
for jive.l and, lo and behold, there it is. At this point, it has defined a transformation
path as follows:

.l -> .c -> .o -> .out

and applies the transformation rules accordingly. For completeness, and to give you a
better idea of what PMake actually did with this three-step transformation, this is what
PMake printed for the rest of the process:

Suff_FindDeps (jive.o)
 using existing source jive.c
 applying .c -> .o to "jive.c"
Suff_FindDeps (jive.c)
 using existing source jive.l
 applying .l -> .c to "jive.l"
Suff_FindDeps (jive.l)
Examining jive.l...modified 17:16:01 Oct 4, 1987...up-to-date
Examining jive.c...non-existent...out-of-date

Chapter 3. Short-cuts and Other Nice
Things

27

--- jive.c ---
lex jive.l
... meaningless lex output deleted ...
mv lex.yy.c jive.c
Examining jive.o...non-existent...out-of-date
--- jive.o ---
cc -c jive.c
Examining jive.out...non-existent...out-of-date
--- jive.out ---
cc -o jive.out jive.o

One final question remains: what does PMake do with targets that have no known suffix?
PMake simply pretends it actually has a known suffix and searches for transformations
accordingly. The suffix it chooses is the source for the .NULL target mentioned later. In
the system makefile, .out is chosen as the “null suffix” because most people use PMake
to create programs. You are, however, free and welcome to change it to a suffix of your
own choosing. The null suffix is ignored, however, when PMake is in compatibility mode
(see Chapter 4, PMake for Gods).

3.2. Including Other Makefiles
Just as for programs, it is often useful to extract certain parts of a makefile into another file
and just include it in other makefiles somehow. Many compilers allow you say something
like:

#include "defs.h"

to include the contents of defs.h in the source file. PMake allows you to do the same
thing for makefiles, with the added ability to use variables in the filenames. An include
directive in a makefile looks either like this:

#include <file>

or this:

#include "file"

The difference between the two is where PMake searches for the file: the first way, PMake
will look for the file only in the system makefile directory (or directories) (to find out what
that directory is, give PMake the -h flag). The system makefile directory search path can
be overridden via the -m option. For files in double-quotes, the search is more complex:

1. The directory of the makefile that's including the file.

2. The current directory (the one in which you invoked PMake).

3. The directories given by you using -I flags, in the order in which you gave them.

Saving Commands

28

4. Directories given by .PATH dependency lines (see Chapter 4, PMake for Gods).

5. The system makefile directory.

in that order.

You are free to use PMake variables in the filename – PMake will expand them before
searching for the file. You must specify the searching method with either angle brackets
or double-quotes outside of a variable expansion. I.e. the following:

SYSTEM = <command.mk>

#include $(SYSTEM)

will not work.

3.3. Saving Commands
There may come a time when you will want to save certain commands to be executed
when everything else is done. For instance: you are making several different libraries at
one time and you want to create the members in parallel. Problem is, ranlib is another
one of those programs that can not be run more than once in the same directory at the
same time (each one creates a file called __.SYMDEF into which it stuffs information for
the linker to use. Two of them running at once will overwrite each other's file and the re-
sult will be garbage for both parties). You might want a way to save the ranlib commands
til the end so they can be run one after the other, thus keeping them from trashing each
other's file. PMake allows you to do this by inserting an ellipsis (“...”) as a command be-
tween commands to be run at once and those to be run later.

So for the ranlib case above, you might do this:

lib1.a : $(LIB1OBJS)
 rm -f $(.TARGET)
 ar cr $(.TARGET) $(.ALLSRC)
 ...
 ranlib $(.TARGET)

lib2.a : $(LIB2OBJS)
 rm -f $(.TARGET)
 ar cr $(.TARGET) $(.ALLSRC)
 ...
 ranlib $(.TARGET)

This would save both

ranlib $(.TARGET)

commands until the end, when they would run one after the other (using the correct
value for the .TARGET variable, of course).

Chapter 3. Short-cuts and Other Nice
Things

29

Commands saved in this manner are only executed if PMake manages to re-create every-
thing without an error.

3.4. Target Attributes
PMake allows you to give attributes to targets by means of special sources. Like everything
else PMake uses, these sources begin with a period and are made up of all upper-case
letters. There are various reasons for using them, and I will try to give examples for most
of them. Others you will have to find uses for yourself. Think of it as “an exercise for
the reader”. By placing one (or more) of these as a source on a dependency line, you are
“marking the target(s) with that attribute”. That is just the way I phrase it, so you know.

Any attributes given as sources for a transformation rule are applied to the target of the
transformation rule when the rule is applied.

.DONT-
CARE

If a target is marked with this attribute and PMake can not figure out how to
create it, it will ignore this fact and assume the file is not really needed or actu-
ally exists and PMake just can not find it. This may prove wrong, but the error
will be noted later on, not when PMake tries to create the target so marked. This
attribute also prevents PMake from attempting to touch the target if it is given
the -t flag.

.EXEC This attribute causes its shell script to be executed while having no effect on
targets that depend on it. This makes the target into a sort of subroutine. An
example. Say you have some LISP files that need to be compiled and loaded into
a LISP process. To do this, you echo LISP commands into a file and execute a LISP
with this file as its input when everything is done. Say also that you have to load
other files from another system before you can compile your files and further,
that you do not want to go through the loading and dumping unless one of your
files has changed. Your makefile might look a little bit like this (remember, this
is an educational example, and do not worry about the COMPILE rule, all will soon
become clear, grasshopper):

system : init a.fasl b.fasl c.fasl
 for i in $(.ALLSRC);
 do
 echo -n '(load "' >> input
 echo -n ${i} >> input
 echo '")' >> input
 done
 echo '(dump "$(.TARGET)")' >> input
 lisp < input

a.fasl : a.l init COMPILE
b.fasl : b.l init COMPILE
c.fasl : c.l init COMPILE
COMPILE : .USE

Target Attributes

30

 echo '(compile "$(.ALLSRC)")' >> input
init : .EXEC
 echo '(load-system)' > input

.EXEC sources, do not appear in the local variables of targets that depend on
them (nor are they touched if PMake is given the -t flag). Note that all the rules,
not just that for system, include init as a source. This is because none of the other
targets can be made until init has been made, thus they depend on it.

.EX-
PORT

This is used to mark those targets whose creation should be sent to another ma-
chine if at all possible. This may be used by some exportation schemes if the
exportation is expensive. You should ask your system administrator if it is nec-
essary.

.EX-
PORTSAME

Tells the export system that the job should be exported to a machine of the same
architecture as the current one. Certain operations (e.g. running text through
nroff) can be performed the same on any architecture (CPU and operating sys-
tem type), while others (e.g. compiling a program with cc) must be performed
on a machine with the same architecture. Not all export systems will support
this attribute.

.IG-
NORE

Giving a target the .IGNORE attribute causes PMake to ignore errors from any of
the target's commands, as if they all had - before them.

.IN-
VISIBLE

This allows you to specify one target as a source for another without the one af-
fecting the other's local variables. Useful if, say, you have a makefile that creates
two programs, one of which is used to create the other, so it must exist before
the other is created. You could say

prog1 : $(PROG1OBJS) prog2 MAKEINSTALL
prog2 : $(PROG2OBJS) .INVISIBLE MAKEINSTALL

where MAKEINSTALL is some complex .USE rule (see below) that depends on the
.ALLSRC variable containing the right things. Without the .INVISIBLE attribute
for prog2 , the MAKEINSTALL rule could not be applied. This is not as useful as it
should be, and the semantics may change (or the whole thing go away) in the
not-too-distant future.

.JOIN This is another way to avoid performing some operations in parallel while per-
mitting everything else to be done so. Specifically it forces the target's shell
script to be executed only if one or more of the sources was out-of-date. In addi-
tion, the target's name, in both its .TARGET variable and all the local variables of
any target that depends on it, is replaced by the value of its .ALLSRC variable. As
an example, suppose you have a program that has four libraries that compile in
the same directory along with, and at the same time as, the program. You again
have the problem with ranlib that I mentioned earlier, only this time it is more
severe: you can not just put the ranlib off to the end since the program will need
those libraries before it can be re-created. You can do something like this:

Chapter 3. Short-cuts and Other Nice
Things

31

program : $(OBJS) libraries
 cc -o $(.TARGET) $(.ALLSRC)

libraries : lib1.a lib2.a lib3.a lib4.a .JOIN
 ranlib $(.OODATE)

In this case, PMake will re-create the $(OBJS) as necessary, along with lib1.a ,
lib2.a , lib3.a and lib4.a . It will then execute ranlib on any library that was
changed and set program's .ALLSRC variable to contain what's in $(OBJS) fol-
lowed by “lib1.a lib2.a lib3.a lib4.a .” In case you are wondering, it is
called .JOIN because it joins together different threads of the “input graph” at
the target marked with the attribute. Another aspect of the .JOIN attribute is it
keeps the target from being created if the -t flag was given.

.MAKE The .MAKE attribute marks its target as being a recursive invocation of PMake.
This forces PMake to execute the script associated with the target (if it is out-of-
date) even if you gave the -n or -t flag. By doing this, you can start at the top
of a system and type

pmake -n

and have it descend the directory tree (if your makefiles are set up correctly),
printing what it would have executed if you had not included the -n flag.

.NO-
EX-
PORT

If possible, PMake will attempt to export the creation of all targets to another
machine (this depends on how PMake was configured). Sometimes, the creation
is so simple, it is pointless to send it to another machine. If you give the target
the .NOEXPORT attribute, it will be run loally, even if you have given PMake the
-L 0 flag.

.NOT-
MAIN

Normally, if you do not specify a target to make in any other way, PMake will take
the first target on the first dependency line of a makefile as the target to create.
That target is known as the “Main Target” and is labeled as such if you print
the dependencies out using the -p flag. Giving a target this attribute tells PMake
that the target is definitely not the Main Target. This allows you to place targets
in an included makefile and have PMake create something else by default.

.PRECIOUSWhen PMake is interrupted (you type control-C at the keyboard), it will attempt
to clean up after itself by removing any half-made targets. If a target has the
.PRECIOUS attribute, however, PMake will leave it alone. An additional side ef-
fect of the :: operator is to mark the targets as .PRECIOUS .

.SI-
LENT

Marking a target with this attribute keeps its commands from being printed
when they are executed, just as if they had an @ in front of them.

.USE By giving a target this attribute, you turn it into PMake's equivalent of a macro.
When the target is used as a source for another target, the other target acquires
the commands, sources and attributes (except .USE) of the source. If the target
already has commands, the .USE target's commands are added to the end. If

Special Targets

32

more than one .USE-marked source is given to a target, the rules are applied
sequentially. The typical .USE rule (as I call them) will use the sources of the
target to which it is applied (as stored in the .ALLSRC variable for the target) as its
“arguments,” if you will. For example, you probably noticed that the commands
for creating lib1.a and lib2.a in the example in section Section 3.3, “Saving
Commands” were exactly the same. You can use the .USE attribute to eliminate
the repetition, like so:

lib1.a : $(LIB1OBJS) MAKELIB
lib2.a : $(LIB2OBJS) MAKELIB

MAKELIB : .USE
 rm -f $(.TARGET)
 ar cr $(.TARGET) $(.ALLSRC)
 ...
 ranlib $(.TARGET)

Several system makefiles (not to be confused with The System Makefile) make
use of these .USE rules to make your life easier (they are in the default, system
makefile directory...take a look). Note that the .USE rule source itself (MAKELIB)
does not appear in any of the targets's local variables. There is no limit to the
number of times I could use the MAKELIB rule. If there were more libraries, I
could continue with lib3.a : $(LIB3OBJS) MAKELIB and so on and so forth.

3.5. Special Targets
As there were in Make, so there are certain targets that have special meaning to PMake.
When you use one on a dependency line, it is the only target that may appear on the left-
hand-side of the operator. As for the attributes and variables, all the special targets begin
with a period and consist of upper-case letters only. I will not describe them all in detail
because some of them are rather complex and I will describe them in more detail than
you will want in Chapter 4, PMake for Gods. The targets are as follows:

.BEGIN Any commands attached to this target are executed before anything else is done.
You can use it for any initialization that needs doing.

.DE-
FAULT

This is sort of a .USE rule for any target (that was used only as a source) that
PMake can not figure out any other way to create. It is only “sort of” a .USE
rule because only the shell script attached to the .DEFAULT target is used. The
.IMPSRC variable of a target that inherits .DEFAULT 's commands is set to the
target's own name.

.END This serves a function similar to .BEGIN , in that commands attached to it are
executed once everything has been re-created (so long as no errors occurred).
It also serves the extra function of being a place on which PMake can hang com-

Chapter 3. Short-cuts and Other Nice
Things

33

mands you put off to the end. Thus the script for this target will be executed
before any of the commands you save with the “...”.

.EX-
PORT

The sources for this target are passed to the exportation system compiled into
PMake. Some systems will use these sources to configure themselves. You should
ask your system administrator about this.

.IG-
NORE

This target marks each of its sources with the .IGNORE attribute. If you do not
give it any sources, then it is like giving the -i flag when you invoke PMake –
errors are ignored for all commands.

.IN-
CLUDES

The sources for this target are taken to be suffixes that indicate a file that can be
included in a program source file. The suffix must have already been declared
with .SUFFIXES (see below). Any suffix so marked will have the directories on its
search path (see .PATH , below) placed in the .INCLUDES variable, each preceded
by a -I flag. This variable can then be used as an argument for the compiler in
the normal fashion. The .h suffix is already marked in this way in the system
makefile. E.g. if you have

.SUFFIXES : .bitmap

.PATH.bitmap : /usr/local/X/lib/bitmaps

.INCLUDES : .bitmap

PMake will place -I/usr/local/X/lib/bitmaps in the .INCLUDES variable and
you can then say

cc $(.INCLUDES) -c xprogram.c

(Note: the .INCLUDES variable is not actually filled in until the entire makefile
has been read.)

.IN-
TER-
RUPT

When PMake is interrupted, it will execute the commands in the script for this
target, if it exists.

.LIBS This does for libraries what .INCLUDES does for include files, except the flag used
is -L, as required by those linkers that allow you to tell them where to find li-
braries. The variable used is .LIBS . Be forewarned that PMake may not have
been compiled to do this if the linker on your system does not accept the -L flag,
though the .LIBS variable will always be defined once the makefile has been
read.

.MAIN If you did not give a target (or targets) to create when you invoked PMake, it will
take the sources of this target as the targets to create.

.MAKE-
FLAGS

This target provides a way for you to always specify flags for PMake when the
makefile is used. The flags are just as they would be typed to the shell (except
you can not use shell variables unless they are in the environment), though the
-f and -r flags have no effect.

Modifying Variable Expansion

34

.NULL This allows you to specify what suffix PMake should pretend a file has if, in fact,
it has no known suffix. Only one suffix may be so designated. The last source on
the dependency line is the suffix that is used (you should, however, only give
one suffix...).

.PATH If you give sources for this target, PMake will take them as directories in which
to search for files it cannot find in the current directory. If you give no sources,
it will clear out any directories added to the search path before. Since the effects
of this all get very complex, we will leave it till Chapter 4, PMake for Gods to give
you a complete explanation.

.PATH-
suf-
fix

This does a similar thing to .PATH , but it does it only for files with the given suf-
fix. The suffix must have been defined already. Look at Search Paths (Section 4.1,
“Search Paths”) for more information.

.PRECIOUSSimilar to .IGNORE, this gives the .PRECIOUS attribute to each source on the
dependency line, unless there are no sources, in which case the .PRECIOUS at-
tribute is given to every target in the file.

.RE-
CURSIVE

This target applies the .MAKE attribute to all its sources. It does nothing if you
do not give it any sources.

.SHELL PMake is not constrained to only using the Bourne shell to execute the com-
mands you put in the makefile. You can tell it some other shell to use with this
target. Check out “A Shell is a Shell is a Shell” (Section 4.4, “A Shell is a Shell is
a Shell”) for more information.

.SI-
LENT

When you use .SILENT as a target, it applies the .SILENT attribute to each of its
sources. If there are no sources on the dependency line, then it is as if you gave
PMake the -s flag and no commands will be echoed.

.SUF-
FIXES

This is used to give new file suffixes for PMake to handle. Each source is a suf-
fix PMake should recognize. If you give a .SUFFIXES dependency line with no
sources, PMake will forget about all the suffixes it knew (this also nukes the null
suffix). For those targets that need to have suffixes defined, this is how you do it.

In addition to these targets, a line of the form:

attribute : sources

applies the attribute to all the targets listed as sources.

3.6. Modifying Variable Expansion
Variables need not always be expanded verbatim. PMake defines several modifiers that
may be applied to a variable's value before it is expanded. You apply a modifier by placing
it after the variable name with a colon between the two, like so:

${VARIABLE:modifier}

Chapter 3. Short-cuts and Other Nice
Things

35

Each modifier is a single character followed by something specific to the modifier itself.
You may apply as many modifiers as you want – each one is applied to the result of the
previous and is separated from the previous by another colon.

There are seven ways to modify a variable's expansion, most of which come from the C
shell variable modification characters:

Mpattern
This is used to select only those words (a word is a series of characters that are nei-
ther spaces nor tabs) that match the given pattern. The pattern is a wildcard pattern
like that used by the shell, where * means 0 or more characters of any sort; ? is any
single character; [abcd] matches any single character that is either a, b, c or d (there
may be any number of characters between the brackets); [0-9] matches any single
character that is between 0 and 9 (i.e. any digit. This form may be freely mixed with
the other bracket form), and \ is used to escape any of the characters *, ?, [or :,
leaving them as regular characters to match themselves in a word. For example, the
system makefile <makedepend.mk> uses $(CFLAGS:M-[ID]*) to extract all the -I
and -D flags that would be passed to the C compiler. This allows it to properly locate
include files and generate the correct dependencies.

Npattern
This is identical to :M except it substitutes all words that do not match the given
pattern.

S/search-string/replacement-string/[g]
Causes the first occurrence of search-string in the variable to be replaced by replace-
ment-string, unless the g flag is given at the end, in which case all occurrences of
the string are replaced. The substitution is performed on each word in the variable
in turn. If search-string begins with a ^, the string must match starting at the begin-
ning of the word. If search-string ends with a $, the string must match to the end
of the word (these two may be combined to force an exact match). If a backslash
precedes these two characters, however, they lose their special meaning. Variable
expansion also occurs in the normal fashion inside both the search-string and the
replacement-string, except that a backslash is used to prevent the expansion of a $,
not another dollar sign, as is usual. Note that search-string is just a string, not a pat-
tern, so none of the usual regularexpression/wildcard characters have any special
meaning save ^ and $. In the replacement string, the & character is replaced by the
search-string unless it is preceded by a backslash. You are allowed to use any char-
acter except colon or exclamation point to separate the two strings. This so-called
delimiter character may be placed in either string by preceding it with a backslash.

T
Replaces each word in the variable expansion by its last component (its “tail”). For
example, given:

OBJS = ../lib/a.o b /usr/lib/libm.a

More Exercises

36

TAILS = $(OBJS:T)

the variable TAILS would expand to a.o b libm.a.

H
This is similar to :T, except that every word is replaced by everything but the tail
(the “head”). Using the same definition of OBJS, the string $(OBJS:H) would expand
to ../lib /usr/lib. Note that the final slash on the heads is removed and anything
without a head is replaced by the empty string.

E
:E replaces each word by its suffix (“extension”). So $(OBJS:E) would give you
.o .a.

R
This replaces each word by everything but the suffix (the “root” of the word).
$(OBJS:R) expands to ../lib/a b /usr/lib/libm .

In addition, the System V style of substitution is also supported. This looks like:

$(VARIABLE:search-string=replacement)

It must be the last modifier in the chain. The search is anchored at the end of each word,
so only suffixes or whole words may be replaced.

3.7. More Exercises
Exercise 3.1

You have got a set programs, each of which is created from its own assembly-language
source file (suffix .asm). Each program can be assembled into two versions, one with er-
ror-checking code assembled in and one without. You could assemble them into files with
different suffixes (.eobj and .obj, for instance), but your linker only understands files
that end in .obj. To top it all off, the final executables must have the suffix .exe. How can
you still use transformation rules to make your life easier (Hint: assume the errorcheck-
ing versions have ec tacked onto their prefix)?

Exercise 3.2

Assume, for a moment or two, you want to perform a sort of “indirection” by placing
the name of a variable into another one, then you want to get the value of the first by
expanding the second somehow. Unfortunately, PMake does not allow constructs like:

$($(FOO))

What do you do? Hint: no further variable expansion is performed after modifiers are
applied, thus if you cause a $ to occur in the expansion, that is what will be in the result.

Chapter 4. PMake for Gods
This chapter is devoted to those facilities in PMake that allow you to do a great deal in a
makefile with very little work, as well as do some things you could not do in Make without
a great deal of work (and perhaps the use of other programs). The problem with these
features, is they must be handled with care, or you will end up with a mess.

Once more, I assume a greater familiarity with UNIX® or Sprite than I did in the previous
two chapters.

4.1. Search Paths
PMake supports the dispersal of files into multiple directories by allowing you to specify
places to look for sources with .PATH targets in the makefile. The directories you give as
sources for these targets make up a “search path”. Only those files used exclusively as
sources are actually sought on a search path, the assumption being that anything listed as
a target in the makefile can be created by the makefile and thus should be in the current
directory.

There are two types of search paths in PMake: one is used for all types of files (including
included makefiles) and is specified with a plain .PATH target (e.g. .PATH : RCS), while
the other is specific to a certain type of file, as indicated by the file's suffix. A specific
search path is indicated by immediately following the .PATH with the suffix of the file.
For instance:

.PATH.h : /sprite/lib/include /sprite/att/lib/include

would tell PMake to look in the directories /sprite/lib/include and /sprite/att/
lib/include for any files whose suffix is .h.

The current directory is always consulted first to see if a file exists. Only if it cannot be
found there are the directories in the specific search path, followed by those in the general
search path, consulted.

A search path is also used when expanding wildcard characters. If the pattern has a rec-
ognizable suffix on it, the path for that suffix will be used for the expansion. Otherwise
the default search path is employed.

When a file is found in some directory other than the current one, all local variables that
would have contained the target's name (.ALLSRC, and .IMPSRC) will instead contain the
path to the file, as found by PMake. Thus if you have a file ../lib/mumble.c and a make-
file like this:

.PATH.c : ../lib
mumble : mumble.c

Archives and Libraries

38

 $(CC) -o $(.TARGET) $(.ALLSRC)

the command executed to create mumble would be cc -o mumble ../lib/mumble.c.
(as an aside, the command in this case is not strictly necessary, since it will be found using
transformation rules if it is not given. This is because .out is the null suffix by default
and a transformation exists from .c to .out. Just thought I would throw that in). If a file
exists in two directories on the same search path, the file in the first directory on the path
will be the one PMake uses. So if you have a large system spread over many directories,
it would behoove you to follow a naming convention that avoids such conflicts.

Something you should know about the way search paths are implemented is that each
directory is read, and its contents cached, exactly once – when it is first encountered – so
any changes to the directories while PMake is running will not be noted when searching
for implicit sources, nor will they be found when PMake attempts to discover when the file
was last modified, unless the file was created in the current directory. While people have
suggested that PMake should read the directories each time, my experience suggests that
the caching seldom causes problems. In addition, not caching the directories slows things
down enormously because of PMake's attempts to apply transformation rules through
non-existent files – the number of extra file-system searches is truly staggering, especially
if many files without suffixes are used and the null suffix is not changed from .out.

4.2. Archives and Libraries
UNIX® and Sprite allow you to merge files into an archive using the ar command. Further,
if the files are relocatable object files, you can run ranlib on the archive and get yourself
a library that you can link into any program you want. The main problem with archives
is they double the space you need to store the archived files, since there is one copy in
the archive and one copy out by itself. The problem with libraries is you usually think of
them as -lm rather than /usr/lib/libm.a and the linker thinks they are out-of-date if
you so much as look at them.

PMake solves the problem with archives by allowing you to tell it to examine the files in
the archives (so you can remove the individual files without having to regenerate them
later). To handle the problem with libraries, PMake adds an additional way of deciding
if a library is out-of-date: if the table of contents is older than the library, or is missing,
the library is out-of-date.

A library is any target that looks like -lname or that ends in a suffix that was marked
as a library using the .LIBS target. .a is so marked in the system makefile. Members of
an archive are specified as archive(member[member...]) . Thus libdix.a(window.o)
specifies the file window.o in the archive libdix.a . You may also use wildcards to spec-
ify the members of the archive. Just remember that most the wildcard characters will
only find existing files. A file that is a member of an archive is treated specially. If the
file does not exist, but it is in the archive, the modification time recorded in the archive
is used for the file when determining if the file is out-of-date. When figuring out how

Chapter 4. PMake for Gods

39

to make an archived member target (not the file itself, but the file in the archive – the
archive(member) target), special care is taken with the transformation rules, as follows:

• archive(member) is made to depend on member.

• The transformation from the member's suffix to the archive's suffix is applied to the
archive(member) target.

• The archive(member)'s .TARGET variable is set to the name of the member if member
is actually a target, or the path to the member file if member is only a source.

• The .ARCHIVE variable for the archive(member) target is set to the name of the archive.

• The .MEMBER variable is set to the actual string inside the parentheses. In most cases,
this will be the same as the .TARGET variable.

• The archive(member)'s place in the local variables of the targets that depend on it is
taken by the value of its .TARGET variable.

Thus, a program library could be created with the following makefile:

.o.a :
 ...
 rm -f $(.TARGET:T)
OBJS = obj1.o obj2.o obj3.o
libprog.a : libprog.a($(OBJS))
 ar cru $(.TARGET) $(.OODATE)
 ranlib $(.TARGET)

This will cause the three object files to be compiled (if the corresponding source files were
modified after the object file or, if that does not exist, the archived object file), the out-
of-date ones archived in libprog.a , a table of contents placed in the archive and the
newly-archived object files to be removed.

All this is used in the makelib.mk system makefile to create a single library with ease.
This makefile looks like this:

#
Rules for making libraries. The object files that make up the ↺
library
are removed once they are archived.
#
To make several libraries in parallel, you should define the ↺
variable
"many_libraries". This will serialize the invocations of ranlib.
#
To use, do something like this:
#
OBJECTS = <files in the library>
#
fish.a: fish.a($(OBJECTS)) MAKELIB

On the Condition...

40

#
#

#ifndef _MAKELIB_MK
_MAKELIB_MK =

#include <po.mk>

.po.a .o.a :
 ...
 rm -f $(.MEMBER)

ARFLAGS ?= crl

#
Re-archive the out-of-date members and recreate the library's ↺
table of
contents using ranlib. If many_libraries is defined, put the ranlib
off til the end so many libraries can be made at once.
#
MAKELIB : .USE .PRECIOUS
 ar $(ARFLAGS) $(.TARGET) $(.OODATE)
#ifndef no_ranlib
ifdef many_libraries
 ...
endif many_libraries
 ranlib $(.TARGET)
#endif no_ranlib

#endif _MAKELIB_MK

4.3. On the Condition...
Like the C compiler before it, PMake allows you to configure the makefile, based on the
current environment, using conditional statements. A conditional looks like this:

#if boolean expression
lines
#elif another boolean expression
more lines
#else
still more lines
#endif

They may be nested to a maximum depth of 30 and may occur anywhere (except in a
comment, of course). The # must the very first character on the line.

Each boolean expression is made up of terms that look like function calls, the standard C
boolean operators &&, ||, and !, and the standard relational operators ==, !=, >, >=, <, and
<=, with == and != being overloaded to allow string comparisons as well. && represents

Chapter 4. PMake for Gods

41

logical AND; || is logical OR and ! is logical NOT. The arithmetic and string operators
take precedence over all three of these operators, while NOT takes precedence over AND,
which takes precedence over OR. This precedence may be overridden with parentheses,
and an expression may be parenthesized to your heart's content. Each term looks like a
call on one of four functions:

make The syntax is make(target) where target is a target in the makefile. This is true if
the given target was specified on the command line, or as the source for a .MAIN
target (note that the sources for .MAIN are only used if no targets were given
on the command line).

de-
fined

The syntax is defined(variable) and is true if variable is defined. Certain
variables are defined in the system makefile that identify the system on which
PMake is being run.

ex-
ists

The syntax is exists(file) and is true if the file can be found on the global
search path (i.e. that defined by .PATH targets, not by .PATHsuffix targets).

empty This syntax is much like the others, except the string inside the parentheses is of
the same form as you would put between parentheses when expanding a vari-
able, complete with modifiers and everything. The function returns true if the
resulting string is empty. An undefined variable in this context will cause at the
very least a warning message about a malformed conditional, and at the worst
will cause the process to stop once it has read the makefile. If you want to check
for a variable being defined or empty, use the expression: !defined(var) ||
empty(var) as the definition of || will prevent the empty() from being evalu-
ated and causing an error, if the variable is undefined. This can be used to see if
a variable contains a given word, for example: #if !empty(var:Mword)

The arithmetic and string operators may only be used to test the value of a variable. The
lefthand side must contain the variable expansion, while the righthand side contains ei-
ther a string, enclosed in double-quotes, or a number. The standard C numeric conven-
tions (except for specifying an octal number) apply to both sides. E.g.:

#if $(OS) == 4.3

#if $(MACHINE) == "sun3"

#if $(LOAD_ADDR) > 0xc000

are all valid conditionals. In addition, the numeric value of a variable can be tested as a
boolean as follows:

#if $(LOAD)

would see if LOAD contains a non-zero value and:

#if !$(LOAD)

A Shell is a Shell is a Shell

42

would test if LOAD contains a zero value.

In addition to the bare #if, there are other forms that apply one of the first two functions
to each term. They are as follows:

ifdef defined

ifndef !defined

ifmake make

ifnmake !make

There are also the “else if” forms: elif, elifdef , elifndef, elifmake, and elifnmake.

For instance, if you wish to create two versions of a program, one of which is optimized
(the production version) and the other of which is for debugging (has symbols for dbx),
you have two choices: you can create two makefiles, one of which uses the -g flag for
the compilation, while the other uses the -O flag, or you can use another target (call it
debug) to create the debug version. The construct below will take care of this for you. I
have also made it so defining the variable DEBUG (say with pmake -D DEBUG) will also cause
the debug version to be made.

#if defined(DEBUG) || make(debug)
CFLAGS += -g
#else
CFLAGS += -O
#endif

There are, of course, problems with this approach. The most glaring annoyance is that if
you want to go from making a debug version to making a production version, you have
to remove all the object files, or you will get some optimized and some debug versions in
the same program. Another annoyance is you have to be careful not to make two targets
that “conflict” because of some conditionals in the makefile. For instance:

#if make(print)
FORMATTER = ditroff -Plaser_printer
#endif
#if make(draft)
FORMATTER = nroff -Pdot_matrix_printer
#endif

would wreak havoc if you tried pmake draft print since you would use the same for-
matter for each target. As I said, this all gets somewhat complicated.

4.4. A Shell is a Shell is a Shell
In normal operation, the Bourne Shell (better known as sh) is used to execute the com-
mands to re-create targets. PMake also allows you to specify a different shell for it to use

Chapter 4. PMake for Gods

43

when executing these commands. There are several things PMake must know about the
shell you wish to use. These things are specified as the sources for the .SHELL target by
keyword, as follows:

path=path
PMake needs to know where the shell actually resides, so it can execute it. If you
specify this and nothing else, PMake will use the last component of the path and look
in its table of the shells it knows and use the specification it finds, if any. Use this if
you just want to use a different version of the Bourne or C Shell (yes, PMake knows
how to use the C Shell too).

name=name
This is the name by which the shell is to be known. It is a single word and, if no other
keywords are specified (other than path), it is the name by which PMake attempts
to find a specification for it (as mentioned above). You can use this if you would just
rather use the C Shell than the Bourne Shell (.SHELL: name=csh will do it).

quiet=echo-off command
As mentioned before, PMake actually controls whether commands are printed by
introducing commands into the shell's input stream. This keyword, and the next two,
control what those commands are. The quiet keyword is the command used to turn
echoing off. Once it is turned off, echoing is expected to remain off until the echo-
on command is given.

echo=echo-on command
The command PMake should give to turn echoing back on again.

filter=printed echo-off command
Many shells will echo the echo-off command when it is given. This keyword tells
PMake in what format the shell actually prints the echo-off command. Wherever
PMake sees this string in the shell's output, it will delete it and any following white-
space, up to and including the next newline. See the example at the end of this sec-
tion for more details.

echoFlag=flag to turn echoing on
Unless a target has been marked .SILENT, PMake wants to start the shell running
with echoing on. To do this, it passes this flag to the shell as one of its arguments.
If either this or the next flag begins with a -, the flags will be passed to the shell as
separate arguments. Otherwise, the two will be concatenated (if they are used at the
same time, of course).

errFlag=flag to turn error checking on
Likewise, unless a target is marked .IGNORE, PMake wishes error-checking to be on
from the very start. To this end, it will pass this flag to the shell as an argument. The
same rules for an initial - apply as for the echoFlag .

A Shell is a Shell is a Shell

44

check=command to turn error checking on
Just as for echo-control, error-control is achieved by inserting commands into the
shell's input stream. This is the command to make the shell check for errors. It also
serves another purpose if the shell does not have error-control as commands, but I
will get into that in a minute. Again, once error checking has been turned on, it is
expected to remain on until it is turned off again.

ignore=command to turn error checking off
This is the command PMake uses to turn error checking off. It has another use if the
shell does not do errorcontrol, but I will tell you about that...now.

hasErrCtl=yes or no
This takes a value that is either yes or no. Now you might think that the existence
of the check and ignore keywords would be enough to tell PMake if the shell can do
error-control, but you would be wrong. If hasErrCtl is yes, PMake uses the check
and ignore commands in a straight-forward manner. If this is no, however, their use
is rather different. In this case, the check command is used as a template, in which
the string %s is replaced by the command that is about to be executed, to produce a
command for the shell that will echo the command to be executed. The ignore com-
mand is also used as a template, again with %s replaced by the command to be ex-
ecuted, to produce a command that will execute the command to be executed and
ignore any error it returns. When these strings are used as templates, you must pro-
vide newline(s) (\n) in the appropriate place(s).

The strings that follow these keywords may be enclosed in single or double quotes (the
quotes will be stripped off) and may contain the usual C backslash-characters (\n is new-
line, \r is return, \b is backspace, \' escapes a single-quote inside single-quotes, \" es-
capes a double-quote inside double-quotes). Now for an example.

This is actually the contents of the <shx.mk> system makefile, and causes PMake to use
the Bourne Shell in such a way that each command is printed as it is executed. That is,
if more than one command is given on a line, each will be printed separately. Similarly,
each time the body of a loop is executed, the commands within that loop will be printed,
etc. The specification runs like this:

#
This is a shell specification to have the Bourne shell echo
the commands just before executing them, rather than when it reads
them. Useful if you want to see how variables are being expanded, ↺
etc.
#
.SHELL : path=/bin/sh \
 quiet="set -" \
 echo="set -x" \
 filter="+ set - " \
 echoFlag=x \
 errFlag=e \
 hasErrCtl=yes \

Chapter 4. PMake for Gods

45

 check="set -e" \
 ignore="set +e"

It tells PMake the following:

• The shell is located in the file /bin/sh . It need not tell PMake that the name of the shell
is sh as PMake can figure that out for itself (it is the last component of the path).

• The command to stop echoing is set -.

• The command to start echoing is set -x.

• When the echo off command is executed, the shell will print + set - (The + comes from
using the -x flag (rather than the -v flag PMake usually uses)). PMake will remove all
occurrences of this string from the output, so you do not notice extra commands you
did not put there.

• The flag the Bourne Shell will take to start echoing in this way is the -x flag. The Bourne
Shell will only take its flag arguments concatenated as its first argument, so neither
this nor the errFlag specification begins with a -.

• The flag to use to turn error-checking on from the start is -e.

• The shell can turn error-checking on and off, and the commands to do so are set +e
and set -e, respectively.

I should note that this specification is for Bourne Shells that are not part of Berkeley
UNIX®, as shells from Berkeley do not do error control. You can get a similar effect, how-
ever, by changing the last three lines to be:

hasErrCtl=no \
check="echo \"+ %s\"\n" \
ignore="sh -c '%s || exit 0\n"

This will cause PMake to execute the two commands:

echo "+ cmd"
sh -c 'cmd || true'

for each command for which errors are to be ignored. (In case you are wondering, the
thing for ignore tells the shell to execute another shell without error checking on and
always exit 0, since the || causes the exit 0 to be executed only if the first command exited
non-zero, and if the first command exited zero, the shell will also exit zero, since that is
the last command it executed).

4.5. Compatibility
There are three (well, 3 1/2) levels of backwards-compatibility built into PMake. Most
makefiles will need none at all. Some may need a little bit of work to operate correctly

DEFCON 3 – Variable Expansion

46

when run in parallel. Each level encompasses the previous levels (e.g. -B (one shell per
command) implies -V). The three levels are described in the following three sections.

4.6. DEFCON 3 – Variable Expansion
As noted before, PMake will not expand a variable unless it knows of a value for it. This can
cause problems for makefiles that expect to leave variables undefined except in special
circumstances (e.g. if more flags need to be passed to the C compiler or the output from
a text processor should be sent to a different printer). If the variables are enclosed in
curly braces (${PRINTER}), the shell will let them pass. If they are enclosed in parentheses,
however, the shell will declare a syntax error and the make will come to a grinding halt.

You have two choices: change the makefile to define the variables (their values can be
overridden on the command line, since that is where they would have been set if you used
Make, anyway) or always give the -V flag (this can be done with the .MAKEFLAGS target,
if you want).

4.7. DEFCON 2 – The Number of the Beast
Then there are the makefiles that expect certain commands, such as changing to a differ-
ent directory, to not affect other commands in a target's creation script. You can solve
this is either by going back to executing one shell per command (which is what the -B
flag forces PMake to do), which slows the process down a good bit and requires you to
use semicolons and escaped newlines for shell constructs, or by changing the makefile to
execute the offending command(s) in a subshell (by placing the line inside parentheses),
like so:

install :: .MAKE
 (cd src; $(.PMAKE) install)
 (cd lib; $(.PMAKE) install)
 (cd man; $(.PMAKE) install)

This will always execute the three makes (even if the -n flag was given) because of the
combination of the :: operator and the .MAKE attribute. Each command will change to the
proper directory to perform the install, leaving the main shell in the directory in which
it started.

4.8. DEFCON 1 – Imitation is the Not the Highest
Form of Flattery
The final category of makefile is the one where every command requires input, the de-
pendencies are incompletely specified, or you simply cannot create more than one target
at a time, as mentioned earlier. In addition, you may not have the time or desire to up-

Chapter 4. PMake for Gods

47

grade the makefile to run smoothly with PMake. If you are the conservative sort, this is
the compatibility mode for you. It is entered either by giving PMake the -M flag (for Make),
or by executing PMake as make. In either case, PMake performs things exactly like Make
(while still supporting most of the nice new features PMake provides). This includes:

• No parallel execution.

• Targets are made in the exact order specified by the makefile. The sources for each
target are made in strict left-to-right order, etc.

• A single Bourne shell is used to execute each command, thus the shell's $$ variable is
useless, changing directories does not work across command lines, etc.

• If no special characters exist in a command line, PMake will break the command into
words itself and execute the command directly, without executing a shell first. The
characters that cause PMake to execute a shell are: #, =, |, ^, (,), {, }, ;, &, >, <, *, ?, [,],
:, $, `, and \. You should notice that these are all the characters that are given special
meaning by the shell (except ' and , which PMake deals with all by its lonesome).

• The use of the null suffix is turned off.

4.9. The Way Things Work
When PMake reads the makefile, it parses sources and targets into nodes in a graph. The
graph is directed only in the sense that PMake knows which way is up. Each node contains
not only links to all its parents and children (the nodes that depend on it and those on
which it depends, respectively), but also a count of the number of its children that have
already been processed.

The most important thing to know about how PMake uses this graph is that the traversal
is breadth-first and occurs in two passes.

After PMake has parsed the makefile, it begins with the nodes the user has told it to make
(either on the command line, or via a .MAIN target, or by the target being the first in the
file not labeled with the .NOTMAIN attribute) placed in a queue. It continues to take the
node off the front of the queue, mark it as something that needs to be made, pass the
node to Suff_FindDeps (mentioned earlier) to find any implicit sources for the node, and
place all the node's children that have yet to be marked at the end of the queue. If any of
the children is a .USE rule, its attributes are applied to the parent, then its commands are
appended to the parent's list of commands and its children are linked to its parent. The
parent's unmade children counter is then decremented (since the .USE node has been
processed). You will note that this allows a .USE node to have children that are .USE
nodes and the rules will be applied in sequence. If the node has no children, it is placed
at the end of another queue to be examined in the second pass. This process continues
until the first queue is empty.

The Way Things Work

48

At this point, all the leaves of the graph are in the examination queue. PMake removes the
node at the head of the queue and sees if it is out-of-date. If it is, it is passed to a function
that will execute the commands for the node asynchronously. When the commands have
completed, all the node's parents have their unmade children counter decremented and,
if the counter is then 0, they are placed on the examination queue. Likewise, if the node
is up-to-date. Only those parents that were marked on the downward pass are processed
in this way. Thus PMake traverses the graph back up to the nodes the user instructed it
to create. When the examination queue is empty and no shells are running to create a
target, PMake is finished.

Once all targets have been processed, PMake executes the commands attached to the .END
target, either explicitly or through the use of an ellipsis in a shell script. If there were no
errors during the entire process but there are still some targets unmade (PMake keeps
a running count of how many targets are left to be made), there is a cycle in the graph.
PMake does a depth-first traversal of the graph to find all the targets that were not made
and prints them out one by one.

Chapter 5. Answers to
Exercises
Exercise 3.1

This is something of a trick question, for which I apologize. The trick comes from the
UNIX® definition of a suffix, which PMake does not necessarily share. You will have no-
ticed that all the suffixes used in this tutorial (and in UNIX® in general) begin with a peri-
od (.ms, .c, etc.). Now, PMake's idea of a suffix is more like English's: it is the characters at
the end of a word. With this in mind, one possible solution to this problem goes as follows:

.SUFFIXES : ec.exe .exe ec.obj .obj .asm
ec.objec.exe .obj.exe :
 link -o $(.TARGET) $(.IMPSRC)
.asmec.obj :
 asm -o $(.TARGET) -DDO_ERROR_CHECKING $(.IMPSRC)
.asm.obj :
 asm -o $(.TARGET) $(.IMPSRC)

Excercise 3.2

The trick to this one lies in the := variable-assignment operator and the :S variable-ex-
pansion modifier. Basically what you want is to take the pointer variable, so to speak, and
transform it into an invocation of the variable at which it points. You might try some-
thing like:

$(PTR:S/^/\$(/:S/$/))

which places $(at the front of the variable name and) at the end, thus transforming
VAR, for example, into $(VAR) , which is just what we want. Unfortunately (as you know
if you have tried it), since, as it says in the hint, PMake does no further substitution on
the result of a modified expansion, that is all you get. The solution is to make use of := to
place that string into yet another variable, then invoke the other variable directly:

*PTR := $(PTR:S/^/\$(/:S/$/)/)

You can then use $(*PTR) to your heart's content.

Glossary of Jargon
attribute A property given to a target that causes PMake to

treat it differently.

command script The lines immediately following a dependency line
that specify commands to execute to create each of
the targets on the dependency line. Each line in the
command script must begin with a tab.

command-line variable A variable defined in an argument when PMake
is first executed. Overrides all assignments to the
same variable name in the makefile.

conditional A construct much like that used in C that allows a
makefile to be configured on the fly based on the
local environment, or on what is being made by that
invocation of PMake.

creation script Commands used to create a target.

dependency The relationship between a source and a target. This
comes in three flavors, as indicated by the operator
between the target and the source. : gives a straight
time-wise dependency (if the target is older than
the source, the target is out-of-date), while ! pro-
vides simply an ordering and always considers the
target out-of-date. :: is much like :, save it creates
multiple instances of a target each of which depends
on its own list of sources.

dynamic source This refers to a source that has a local variable in-
vocation in it. It allows a single dependency line to
specify a different source for each target on the line.

global variable Any variable defined in a makefile. Takes prece-
dence over variables defined in the environment,
but not over command-line or local variables.

input graph What PMake constructs from a makefile. Consists of
nodes made of the targets in the makefile, and the
links between them (the dependencies). The links
are directed (from source to target) and there may
not be any cycles (loops) in the graph.

local variable A variable defined by PMake visible only in a target's
shell script. There are seven local variables, not
all of which are defined for every target: .TARGET,

Glossary of Jargon

52

.ALLSRC, .OODATE, .PREFIX, .IMPSRC, .ARCHIVE , and

.MEMBER. .TARGET, .PREFIX, .ARCHIVE , and .MEMBER
may be used on dependency lines to create “dynam-
ic sources”.

makefile A file that describes how a system is built. If you do
not know what it is after reading this tutorial…

modifier A letter, following a colon, used to alter how a vari-
able is expanded. It has no effect on the variable it-
self.

operator What separates a source from a target (on a depen-
dency line) and specifies the relationship between
the two. There are three: :, ::, and !.

search path A list of directories in which a file should be sought.
PMake's view of the contents of directories in a
search path does not change once the makefile has
been read. A file is sought on a search path only if it
is exclusively a source.

shell A program to which commands are passed in order
to create targets.

source Anything to the right of an operator on a dependen-
cy line. Targets on the dependency line are usually
created from the sources.

special target A target that causes PMake to do special things
when it is encountered.

suffix The tail end of a file name. Usually begins with a pe-
riod, like .c or .ms.

target A word to the left of the operator on a dependency
line. More generally, any file that PMake might cre-
ate. A file may be (and often is) both a target and a
source (what it is depends on how PMake is looking
at it at the time – sort of like the wave/particle du-
ality of light, you know).

transformation rule A special construct in a makefile that specifies how
to create a file of one type from a file of another, as
indicated by their suffixes.

variable expansion The process of substituting the value of a variable
for a reference to it. Expansion may be altered by
means of modifiers.

Glossary of Jargon

53

variable A place in which to store text that may be retrieved
later. Also used to define the local environment.
Conditionals exist that test whether a variable is de-
fined or not.

	PMake — A Tutorial
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The Basics of PMake
	2.1. Dependency Lines
	2.2. Shell Commands
	2.3. Variables
	2.3.1. Local Variables
	2.3.2. Command-line Variables
	2.3.3. Global Variables
	2.3.4. Environment Variables

	2.4. Comments
	2.5. Parallelism
	2.6. Writing and Debugging a Makefile
	2.7. Invoking PMake
	2.8. Summary

	Chapter 3. Short-cuts and Other Nice Things
	3.1. Transformation Rules
	3.2. Including Other Makefiles
	3.3. Saving Commands
	3.4. Target Attributes
	3.5. Special Targets
	3.6. Modifying Variable Expansion
	3.7. More Exercises

	Chapter 4. PMake for Gods
	4.1. Search Paths
	4.2. Archives and Libraries
	4.3. On the Condition...
	4.4. A Shell is a Shell is a Shell
	4.5. Compatibility
	4.6. DEFCON 3 – Variable Expansion
	4.7. DEFCON 2 – The Number of the Beast
	4.8. DEFCON 1 – Imitation is the Not the Highest Form of Flattery
	4.9. The Way Things Work

	Chapter 5. Answers to Exercises
	Glossary of Jargon

